All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the problem of singular limit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579476" target="_blank" >RIV/67985840:_____/23:00579476 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.14311/TPFM.2023.002" target="_blank" >https://doi.org/10.14311/TPFM.2023.002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/TPFM.2023.002" target="_blank" >10.14311/TPFM.2023.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the problem of singular limit

  • Original language description

    We consider the problem of singular limit of the compressible Euler system confined to a straight layer Ωδ = (0, δ)×R², δ > 0. In the regime of low Mach number limit and reduction of dimension the convergence to the strong solution of the 2D incompressible Euler system is shown.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Topical Problems of Fluid Mechanics 2023

  • ISBN

    978-80-87012-83-3

  • ISSN

    2336-5781

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    6-12

  • Publisher name

    Ústav termomechaniky AV ČR, v. v. i.

  • Place of publication

    Praha

  • Event location

    Prague

  • Event date

    Feb 22, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article