On the problem of singular limit
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579476" target="_blank" >RIV/67985840:_____/23:00579476 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/TPFM.2023.002" target="_blank" >https://doi.org/10.14311/TPFM.2023.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2023.002" target="_blank" >10.14311/TPFM.2023.002</a>
Alternative languages
Result language
angličtina
Original language name
On the problem of singular limit
Original language description
We consider the problem of singular limit of the compressible Euler system confined to a straight layer Ωδ = (0, δ)×R², δ > 0. In the regime of low Mach number limit and reduction of dimension the convergence to the strong solution of the 2D incompressible Euler system is shown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Topical Problems of Fluid Mechanics 2023
ISBN
978-80-87012-83-3
ISSN
2336-5781
e-ISSN
—
Number of pages
7
Pages from-to
6-12
Publisher name
Ústav termomechaniky AV ČR, v. v. i.
Place of publication
Praha
Event location
Prague
Event date
Feb 22, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—