Randomness in compressible fluid flows past an obstacle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00552599" target="_blank" >RIV/67985840:_____/22:00552599 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10955-022-02879-6" target="_blank" >https://doi.org/10.1007/s10955-022-02879-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10955-022-02879-6" target="_blank" >10.1007/s10955-022-02879-6</a>
Alternative languages
Result language
angličtina
Original language name
Randomness in compressible fluid flows past an obstacle
Original language description
We consider a statistical limit of solutions to the compressible Navier-Stokes system in the high Reynolds number regime in a domain exterior to a rigid body. We investigate to what extent this highly turbulent regime can be modeled by an external stochastic perturbation, as suggested in the related physics literature. To this end, we interpret the statistical limit as a stochastic process on the associated trajectory space. We suppose that the limit process is statistically equivalent to a solution of the stochastic compressible Euler system. Then, necessarily, the stochastic forcing is not active-the limit is a statistical solution of the deterministic Euler system, the solutions S-converge to the limit, if, in addition, the expected value of the limit process solves the Euler system, then the limit is deterministic and the convergence is strong in the Lp-sense. These results strongly indicate that a stochastic forcing may not be a suitable model for turbulent randomness in compressible fluid flows.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Physics
ISSN
0022-4715
e-ISSN
1572-9613
Volume of the periodical
186
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
32
UT code for WoS article
000749188200001
EID of the result in the Scopus database
2-s2.0-85123624264