On convergence of approximate solutions to the compressible Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532187" target="_blank" >RIV/67985840:_____/20:00532187 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s40818-020-00086-8" target="_blank" >https://doi.org/10.1007/s40818-020-00086-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40818-020-00086-8" target="_blank" >10.1007/s40818-020-00086-8</a>
Alternative languages
Result language
angličtina
Original language name
On convergence of approximate solutions to the compressible Euler system
Original language description
We consider a sequence of approximate solutions to the compressible Euler system admitting uniform energy bounds and/or satisfying the relevant field equations modulo an error vanishing in the asymptotic limit. We show that such a sequence either (i) converges strongly in the energy norm, or (ii) the limit is not a weak solution of the associated Euler system. This is in sharp contrast to the incompressible case, where (oscillatory) approximate solutions may converge weakly to solutions of the Euler system. Our approach leans on identifying a system of differential equations satisfied by the associated turbulent defect measure and showing that it only has a trivial solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of PDE
ISSN
2524-5317
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
11
UT code for WoS article
000700356400005
EID of the result in the Scopus database
2-s2.0-85090088581