A note on the long-time behavior of dissipative solutions to the Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00549715" target="_blank" >RIV/67985840:_____/21:00549715 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00028-021-00696-0" target="_blank" >https://doi.org/10.1007/s00028-021-00696-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00028-021-00696-0" target="_blank" >10.1007/s00028-021-00696-0</a>
Alternative languages
Result language
angličtina
Original language name
A note on the long-time behavior of dissipative solutions to the Euler system
Original language description
We show that the Reynolds defect measure for a dissipative weak solution of the compressible Euler system vanishes for large time. This may be seen as a piece of evidence that the dissipative solutions are asymptotically close to weak solutions in the turbulent regime, whence suitable for describing compressible fluid flows in the long run.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Evolution Equations
ISSN
1424-3199
e-ISSN
1424-3202
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
2807-2814
UT code for WoS article
000641244300001
EID of the result in the Scopus database
2-s2.0-85120841154