All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

fp-projective periodicity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00575080" target="_blank" >RIV/67985840:_____/24:00575080 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >https://doi.org/10.1016/j.jpaa.2023.107497</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >10.1016/j.jpaa.2023.107497</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    fp-projective periodicity

  • Original language description

    The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

    1873-1376

  • Volume of the periodical

    228

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    24

  • Pages from-to

    107497

  • UT code for WoS article

    001067990300001

  • EID of the result in the Scopus database

    2-s2.0-85168375225