fp-projective periodicity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00575080" target="_blank" >RIV/67985840:_____/24:00575080 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >https://doi.org/10.1016/j.jpaa.2023.107497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >10.1016/j.jpaa.2023.107497</a>
Alternative languages
Result language
angličtina
Original language name
fp-projective periodicity
Original language description
The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Volume of the periodical
228
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
107497
UT code for WoS article
001067990300001
EID of the result in the Scopus database
2-s2.0-85168375225