Coderived and contraderived categories of locally presentable abelian DG-categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588517" target="_blank" >RIV/67985840:_____/24:00588517 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10489690
Result on the web
<a href="https://doi.org/10.1007/s00209-024-03519-3" target="_blank" >https://doi.org/10.1007/s00209-024-03519-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-024-03519-3" target="_blank" >10.1007/s00209-024-03519-3</a>
Alternative languages
Result language
angličtina
Original language name
Coderived and contraderived categories of locally presentable abelian DG-categories
Original language description
The concept of an abelian DG-category, introduced by the first-named author in Positselski (Exact DG-categories and fully faithful triangulated inclusion functors. arXiv:2110.08237 [math.CT]), unites the notions of abelian categories and (curved) DG-modules in a common framework. In this paper we consider coderived and contraderived categories in the sense of Becker. Generalizing some constructions and results from the preceding papers by Becker (Adv Math 254:187–232, 2014. arXiv:1205.4473 [math.CT]) and by the present authors (Positselski and Št’ovíček in J Pure Appl Algebra 226(#4):106883, 2022. arXiv:2101.10797 [math.CT]), we define the contraderived category of a locally presentable abelian DG-category B with enough projective objects and the coderived category of a Grothendieck abelian DG-category A. We construct the related abelian model category structures and show that the resulting exotic derived categories are well-generated. Then we specialize to the case of a locally coherent Grothendieck abelian DG-category A, and prove that its coderived category is compactly generated by the absolute derived category of finitely presentable objects of A, thus generalizing a result from the second-named author’s preprint (Št’ovíček in On purity and applications to coderived and singularity categories. arXiv:1412.1615 [math.CT]). In particular, the homotopy category of graded-injective left DG-modules over a DG-ring with a left coherent underlying graded ring is compactly generated by the absolute derived category of DG-modules with finitely presentable underlying graded modules. We also describe compact generators of the coderived categories of quasi-coherent matrix factorizations over coherent schemes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
1432-1823
Volume of the periodical
308
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
70
Pages from-to
14
UT code for WoS article
001283010600002
EID of the result in the Scopus database
2-s2.0-85200388996