All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coderived and contraderived categories of locally presentable abelian DG-categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588517" target="_blank" >RIV/67985840:_____/24:00588517 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10489690

  • Result on the web

    <a href="https://doi.org/10.1007/s00209-024-03519-3" target="_blank" >https://doi.org/10.1007/s00209-024-03519-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-024-03519-3" target="_blank" >10.1007/s00209-024-03519-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coderived and contraderived categories of locally presentable abelian DG-categories

  • Original language description

    The concept of an abelian DG-category, introduced by the first-named author in Positselski (Exact DG-categories and fully faithful triangulated inclusion functors. arXiv:2110.08237 [math.CT]), unites the notions of abelian categories and (curved) DG-modules in a common framework. In this paper we consider coderived and contraderived categories in the sense of Becker. Generalizing some constructions and results from the preceding papers by Becker (Adv Math 254:187–232, 2014. arXiv:1205.4473 [math.CT]) and by the present authors (Positselski and Št’ovíček in J Pure Appl Algebra 226(#4):106883, 2022. arXiv:2101.10797 [math.CT]), we define the contraderived category of a locally presentable abelian DG-category B with enough projective objects and the coderived category of a Grothendieck abelian DG-category A. We construct the related abelian model category structures and show that the resulting exotic derived categories are well-generated. Then we specialize to the case of a locally coherent Grothendieck abelian DG-category A, and prove that its coderived category is compactly generated by the absolute derived category of finitely presentable objects of A, thus generalizing a result from the second-named author’s preprint (Št’ovíček in On purity and applications to coderived and singularity categories. arXiv:1412.1615 [math.CT]). In particular, the homotopy category of graded-injective left DG-modules over a DG-ring with a left coherent underlying graded ring is compactly generated by the absolute derived category of DG-modules with finitely presentable underlying graded modules. We also describe compact generators of the coderived categories of quasi-coherent matrix factorizations over coherent schemes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

    1432-1823

  • Volume of the periodical

    308

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    70

  • Pages from-to

    14

  • UT code for WoS article

    001283010600002

  • EID of the result in the Scopus database

    2-s2.0-85200388996