Indestructibility of some compactness principles over models of PFA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00576355" target="_blank" >RIV/67985840:_____/24:00576355 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11210/24:10477924
Result on the web
<a href="https://doi.org/10.1016/j.apal.2023.103359" target="_blank" >https://doi.org/10.1016/j.apal.2023.103359</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2023.103359" target="_blank" >10.1016/j.apal.2023.103359</a>
Alternative languages
Result language
angličtina
Original language name
Indestructibility of some compactness principles over models of PFA
Original language description
We show that PFA (Proper Forcing Axiom) implies that adding any number of Cohen subsets of ω will not add an ω2-Aronszajn tree or a weak ω1-Kurepa tree, and moreover no σ-centered forcing can add a weak ω1-Kurepa tree (a tree of height and size ω1 with at least ω2 cofinal branches). This partially answers an open problem whether ccc forcings can add ω2-Aronszajn trees or ω1-Kurepa trees (with ¬□ω in the latter case). We actually prove more: We show that a consequence of PFA, namely the guessing model principle, GMP, which is equivalent to the ineffable slender tree property, ISP, is preserved by adding any number of Cohen subsets of ω. And moreover, GMP implies that no σ-centered forcing can add a weak ω1-Kurepa tree (see Section 2.1 for definitions). For more generality, we study variations of the principle GMP at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak ℵω+1-Kurepa trees and no ℵω+2-Aronszajn trees.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF19-29633L" target="_blank" >GF19-29633L: Compactness principles and combinatorics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
1873-2461
Volume of the periodical
175
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
103359
UT code for WoS article
001078824100001
EID of the result in the Scopus database
2-s2.0-85171791208