Fuzzy multiplier, sum and intersection rules in non-Lipschitzian settings: Decoupling approach revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00580563" target="_blank" >RIV/67985840:_____/24:00580563 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2023.127985" target="_blank" >https://doi.org/10.1016/j.jmaa.2023.127985</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2023.127985" target="_blank" >10.1016/j.jmaa.2023.127985</a>
Alternative languages
Result language
angličtina
Original language name
Fuzzy multiplier, sum and intersection rules in non-Lipschitzian settings: Decoupling approach revisited
Original language description
We revisit the decoupling approach widely used (often intuitively) in nonlinear analysis and optimization and initially formalized about a quarter of a century ago by Borwein & Zhu, Borwein & Ioffe and Lassonde. It allows one to streamline proofs of necessary optimality conditions and calculus relations, unify and simplify the respective statements, clarify and in many cases weaken the assumptions. In this paper we study weaker concepts of quasiuniform infimum, quasiuniform lower semicontinuity and quasiuniform minimum, putting them into the context of the general theory developed by the aforementioned authors. Along the way, we unify the terminology and notation and fill in some gaps in the general theory. We establish rather general primal and dual necessary conditions characterizing quasiuniform epsilon-minima of the sum of two functions. The obtained fuzzy multiplier rules are formulated in general Banach spaces in terms of Clarke subdifferentials and in Asplund spaces in terms of Frechet subdifferentials. The mentioned fuzzy multiplier rules naturally lead to certain fuzzy subdifferential calculus results. An application from sparse optimal control illustrates applicability of the obtained findings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
532
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
127985
UT code for WoS article
001128354400001
EID of the result in the Scopus database
2-s2.0-85182213029