All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local, colocal, and antilocal properties of modules and complexes over commutative rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583151" target="_blank" >RIV/67985840:_____/24:00583151 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jalgebra.2024.02.006" target="_blank" >https://doi.org/10.1016/j.jalgebra.2024.02.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2024.02.006" target="_blank" >10.1016/j.jalgebra.2024.02.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local, colocal, and antilocal properties of modules and complexes over commutative rings

  • Original language description

    This paper is a commutative algebra introduction to the homological theory of quasi-coherent sheaves and contraherent cosheaves over quasi-compact semi-separated schemes. Antilocality is an alternative way in which global properties are locally controlled in a finite affine open covering. For example, injectivity of modules over non-Noetherian commutative rings is not preserved by localizations, while homotopy injectivity of complexes of modules is not preserved by localizations even for Noetherian rings. The latter also applies to the contraadjustedness and cotorsion properties. All the mentioned properties of modules or complexes over commutative rings are actually antilocal. They are also colocal, if one presumes contraadjustedness. Generally, if the left class in a (hereditary complete) cotorsion theory for modules or complexes of modules over commutative rings is local and preserved by direct images with respect to affine open immersions, then the right class is antilocal. If the right class in a cotorsion theory for contraadjusted modules or complexes of contraadjusted modules is colocal and preserved by such direct images, then the left class is antilocal. As further examples, the class of flat contraadjusted modules is antilocal, and so are the classes of acyclic, Becker-coacyclic, or Becker-contraacyclic complexes of contraadjusted modules. The same applies to the classes of homotopy flat complexes of flat contraadjusted modules and acyclic complexes of flat contraadjusted modules with flat modules of cocycles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    646

  • Issue of the periodical within the volume

    15 May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    56

  • Pages from-to

    100-155

  • UT code for WoS article

    001194145400001

  • EID of the result in the Scopus database

    2-s2.0-85185602395