Local, colocal, and antilocal properties of modules and complexes over commutative rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583151" target="_blank" >RIV/67985840:_____/24:00583151 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jalgebra.2024.02.006" target="_blank" >https://doi.org/10.1016/j.jalgebra.2024.02.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2024.02.006" target="_blank" >10.1016/j.jalgebra.2024.02.006</a>
Alternative languages
Result language
angličtina
Original language name
Local, colocal, and antilocal properties of modules and complexes over commutative rings
Original language description
This paper is a commutative algebra introduction to the homological theory of quasi-coherent sheaves and contraherent cosheaves over quasi-compact semi-separated schemes. Antilocality is an alternative way in which global properties are locally controlled in a finite affine open covering. For example, injectivity of modules over non-Noetherian commutative rings is not preserved by localizations, while homotopy injectivity of complexes of modules is not preserved by localizations even for Noetherian rings. The latter also applies to the contraadjustedness and cotorsion properties. All the mentioned properties of modules or complexes over commutative rings are actually antilocal. They are also colocal, if one presumes contraadjustedness. Generally, if the left class in a (hereditary complete) cotorsion theory for modules or complexes of modules over commutative rings is local and preserved by direct images with respect to affine open immersions, then the right class is antilocal. If the right class in a cotorsion theory for contraadjusted modules or complexes of contraadjusted modules is colocal and preserved by such direct images, then the left class is antilocal. As further examples, the class of flat contraadjusted modules is antilocal, and so are the classes of acyclic, Becker-coacyclic, or Becker-contraacyclic complexes of contraadjusted modules. The same applies to the classes of homotopy flat complexes of flat contraadjusted modules and acyclic complexes of flat contraadjusted modules with flat modules of cocycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
646
Issue of the periodical within the volume
15 May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
56
Pages from-to
100-155
UT code for WoS article
001194145400001
EID of the result in the Scopus database
2-s2.0-85185602395