Singular compactness and definability for Sigma-cotorsion and Gorenstein modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421008" target="_blank" >RIV/00216208:11320/20:10421008 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1k564hlVsi" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1k564hlVsi</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00029-020-0543-2" target="_blank" >10.1007/s00029-020-0543-2</a>
Alternative languages
Result language
angličtina
Original language name
Singular compactness and definability for Sigma-cotorsion and Gorenstein modules
Original language description
We introduce a general version of the singular compactness theorem which makes it possible to show that being a -cotorsion module is a property of the complete theory of the module. As an application of the powerful tools developed along the way, we give a new description of Gorenstein flat modules which implies that, regardless of the ring, the class of all Gorenstein flat modules forms the left-hand class of a perfect cotorsion pair. We also prove the dual result for Gorenstein injective modules.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Selecta Mathematica-New Series [online]
ISSN
1420-9020
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
40
Pages from-to
1-40
UT code for WoS article
000519155700001
EID of the result in the Scopus database
2-s2.0-85081747361