All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular compactness and definability for Sigma-cotorsion and Gorenstein modules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421008" target="_blank" >RIV/00216208:11320/20:10421008 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1k564hlVsi" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1k564hlVsi</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00029-020-0543-2" target="_blank" >10.1007/s00029-020-0543-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular compactness and definability for Sigma-cotorsion and Gorenstein modules

  • Original language description

    We introduce a general version of the singular compactness theorem which makes it possible to show that being a -cotorsion module is a property of the complete theory of the module. As an application of the powerful tools developed along the way, we give a new description of Gorenstein flat modules which implies that, regardless of the ring, the class of all Gorenstein flat modules forms the left-hand class of a perfect cotorsion pair. We also prove the dual result for Gorenstein injective modules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Selecta Mathematica-New Series [online]

  • ISSN

    1420-9020

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    40

  • Pages from-to

    1-40

  • UT code for WoS article

    000519155700001

  • EID of the result in the Scopus database

    2-s2.0-85081747361