Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583300" target="_blank" >RIV/67985840:_____/24:00583300 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/24:00378822
Result on the web
<a href="http://dx.doi.org/10.14311/TPFM.2024.031" target="_blank" >http://dx.doi.org/10.14311/TPFM.2024.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2024.031" target="_blank" >10.14311/TPFM.2024.031</a>
Alternative languages
Result language
angličtina
Original language name
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Original language description
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Topical Problems of Fluid Mechanics
ISBN
978-80-87012-88-8
ISSN
2336-5781
e-ISSN
—
Number of pages
8
Pages from-to
232-239
Publisher name
Institute of Thermomechanics AS CR, v. v. i.
Place of publication
Prague
Event location
Prague
Event date
Feb 21, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001242655400031