The uncountable Hadwiger conjecture and characterizations of trees using graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00584366" target="_blank" >RIV/67985840:_____/24:00584366 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10474-024-01399-x" target="_blank" >https://doi.org/10.1007/s10474-024-01399-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10474-024-01399-x" target="_blank" >10.1007/s10474-024-01399-x</a>
Alternative languages
Result language
angličtina
Original language name
The uncountable Hadwiger conjecture and characterizations of trees using graphs
Original language description
We prove that the existence of a non-special tree of size λ is equivalent to the existence of an uncountably chromatic graph with no Kω1 minor of size λ, establishing a connection between the special tree number and the uncountable Hadwiger conjecture. Also characterizations of Aronszajn, Kurepa and Suslin trees using graphs are deduced. A new generalized notion of connectedness for graphs is introduced using which we are able to characterize weakly compact cardinals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
1588-2632
Volume of the periodical
172
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
19-33
UT code for WoS article
001154647900005
EID of the result in the Scopus database
2-s2.0-85183731803