Exact categories of topological vector spaces with linear topology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585952" target="_blank" >RIV/67985840:_____/24:00585952 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.17323/1609-4514-2024-24-2-219-286" target="_blank" >https://doi.org/10.17323/1609-4514-2024-24-2-219-286</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17323/1609-4514-2024-24-2-219-286" target="_blank" >10.17323/1609-4514-2024-24-2-219-286</a>
Alternative languages
Result language
angličtina
Original language name
Exact categories of topological vector spaces with linear topology
Original language description
We explain why the naïve definition of a natural exact category structure on complete, separated topological vector spaces with linear topology fails. In particular, contrary to Beilinson’s paper 'Remarks on topological algebras' (Moscow Mathematical Journal 8:1 (2008), 1–20), the category of such topological vector spaces is not quasi-abelian. We present a corrected definition of exact category structure which works OK. Then we explain that the corrected definition still has a shortcoming in that a natural tensor product functor is not exact in it, and discuss ways to refine the exact category structure so as to make the tensor product functors exact.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Moscow Mathematical Journal
ISSN
1609-3321
e-ISSN
1609-4514
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
68
Pages from-to
219-286
UT code for WoS article
001294107900004
EID of the result in the Scopus database
2-s2.0-85194254425