A FINITARY ADJOINT FUNCTOR THEOREM To the memory of Věra Trnková
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00381336" target="_blank" >RIV/68407700:21230/24:00381336 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/41/53/41-53.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/41/53/41-53.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A FINITARY ADJOINT FUNCTOR THEOREM To the memory of Věra Trnková
Original language description
Graduated locally finitely presentable categories are introduced, examples include categories of sets, vector spaces, posets, presheaves and Boolean algebras. A finitary functor between graduated locally finitely presentable categories is proved to be a right adjoint if and only if it preserves countable limits. For endofunctors on vector spaces or pointed sets even countable products are sufficient. Surprisingly, for set functors there is a single exception of a (trivial) finitary functor preserving countable products but not countable limits.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
1201-561X
Volume of the periodical
41
Issue of the periodical within the volume
53
Country of publishing house
CA - CANADA
Number of pages
18
Pages from-to
1919-1936
UT code for WoS article
001451159000003
EID of the result in the Scopus database
2-s2.0-85210848789