All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topological endomorphism rings of tilting complexes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586499" target="_blank" >RIV/67985840:_____/24:00586499 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1112/jlms.12939" target="_blank" >https://doi.org/10.1112/jlms.12939</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/jlms.12939" target="_blank" >10.1112/jlms.12939</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topological endomorphism rings of tilting complexes

  • Original language description

    In a compactly generated triangulated category, we introduce a class of tilting objects satisfying a certain purity condition. We call these the decent tilting objects and show that the tilting heart induced by any such object is equivalent to a category of contramodules over the endomorphism ring of the tilting object endowed with a natural linear topology. This extends the recent result for n-tilting modules by Positselski and Št'ovíček. In the setting of the derived category of modules over a ring, we show that the decent tilting complexes are precisely the silting complexes such that their character dual is cotilting. The hearts of cotilting complexes of cofinite type turn out to be equivalent to the category of discrete modules with respect to the same topological ring. Finally, we provide a kind of Morita theory in this setting: Decent tilting complexes correspond to pairs consisting of a tilting and a cotilting-derived equivalence as described above tied together by a tensor compatibility condition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the London Mathematical Society

  • ISSN

    0024-6107

  • e-ISSN

    1469-7750

  • Volume of the periodical

    109

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    e12939

  • UT code for WoS article

    001248249400014

  • EID of the result in the Scopus database

    2-s2.0-85194561972