On some aspects of spectral theory for infinite bounded non-negative matrices in max algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586518" target="_blank" >RIV/67985840:_____/24:00586518 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/03081087.2023.2188155" target="_blank" >https://doi.org/10.1080/03081087.2023.2188155</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081087.2023.2188155" target="_blank" >10.1080/03081087.2023.2188155</a>
Alternative languages
Result language
angličtina
Original language name
On some aspects of spectral theory for infinite bounded non-negative matrices in max algebra
Original language description
Several spectral radii formulas for infinite bounded non-negative matrices in max algebra are obtained. We also prove some Perron–Frobenius type results for such matrices. In particular, we obtain results on block triangular forms, which are similar to results on Frobenius normal form of (Formula presented.) matrices. Some continuity results are also established.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear & Multilinear Algebra
ISSN
0308-1087
e-ISSN
1563-5139
Volume of the periodical
72
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
1535-1554
UT code for WoS article
000952579400001
EID of the result in the Scopus database
2-s2.0-85150711620