All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fraïssé theory for Cuntz semigroups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00587712" target="_blank" >RIV/67985840:_____/24:00587712 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jalgebra.2024.05.052" target="_blank" >https://doi.org/10.1016/j.jalgebra.2024.05.052</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2024.05.052" target="_blank" >10.1016/j.jalgebra.2024.05.052</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fraïssé theory for Cuntz semigroups

  • Original language description

    We develop a theory of Cauchy sequences and intertwinings for morphisms of Cuntz semigroups, which generalizes all past approaches to study metric-like properties of the invariant. Further, the techniques presented here can be applied to all known refinements of the Cuntz semigroup, including those that may be used in new classification results. As a particular application, we introduce a Fraïssé theory for abstract Cuntz semigroups akin to the theory of Fraïssé categories developed by Kubiś. We also show that any (Cuntz) Fraïssé category has a unique Fraïssé limit which is both universal and homogeneous. Several examples of such categories and their Fraïssé limits are given throughout the paper.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    658

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    46

  • Pages from-to

    319-364

  • UT code for WoS article

    001262623500001

  • EID of the result in the Scopus database

    2-s2.0-85197042073