Fraïssé theory for Cuntz semigroups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00587712" target="_blank" >RIV/67985840:_____/24:00587712 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jalgebra.2024.05.052" target="_blank" >https://doi.org/10.1016/j.jalgebra.2024.05.052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2024.05.052" target="_blank" >10.1016/j.jalgebra.2024.05.052</a>
Alternative languages
Result language
angličtina
Original language name
Fraïssé theory for Cuntz semigroups
Original language description
We develop a theory of Cauchy sequences and intertwinings for morphisms of Cuntz semigroups, which generalizes all past approaches to study metric-like properties of the invariant. Further, the techniques presented here can be applied to all known refinements of the Cuntz semigroup, including those that may be used in new classification results. As a particular application, we introduce a Fraïssé theory for abstract Cuntz semigroups akin to the theory of Fraïssé categories developed by Kubiś. We also show that any (Cuntz) Fraïssé category has a unique Fraïssé limit which is both universal and homogeneous. Several examples of such categories and their Fraïssé limits are given throughout the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
658
Issue of the periodical within the volume
November
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
46
Pages from-to
319-364
UT code for WoS article
001262623500001
EID of the result in the Scopus database
2-s2.0-85197042073