All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fractional strain tensor and fractional elasticity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588499" target="_blank" >RIV/67985840:_____/24:00588499 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10659-022-09970-9" target="_blank" >https://doi.org/10.1007/s10659-022-09970-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10659-022-09970-9" target="_blank" >10.1007/s10659-022-09970-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fractional strain tensor and fractional elasticity

  • Original language description

    A new fractional strain tensor ϵα(u) of order α (0<α<1) is introduced for a displacement u of a body occupying the entire three-dimensional space. For α↑1, the fractional strain tensor approaches the classical infinitesimal strain tensor of the linear elasticity. It is shown that ϵα(u) satisfies Korn’s inequality (in a general Lp version, 1<p<∞) and the fractional analog of Saint-Venant’s compatibility condition. The strain ϵα(u) is then used to formulate a three-dimensional fractional linear elasticity theory. The equilibrium of the body in an external force f is determined by the Euler-Lagrange equation of the total energy functional. The solution u is given by Green’s function Gα: (Formula presented.) For an isotropic body the equilibrium equation reads (Formula presented.) where λ, μ are the Lamé moduli of the material and (−Δ)α, ∇α and divα are the fractional laplacean, gradient and divergence. Green’s function can be determined explicitly in this case: (Formula presented.) x∈R3, x≠0, where I is the identity tensor (matrix), and cα a normalization factor (determined below). For α↑1 the function Gα approaches Green’s function of the standard linear elasticity. Similar approach applies to the equilibrium solution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Elasticity

  • ISSN

    0374-3535

  • e-ISSN

    1573-2681

  • Volume of the periodical

    155

  • Issue of the periodical within the volume

    1-5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    23

  • Pages from-to

    425-447

  • UT code for WoS article

    000901954200002

  • EID of the result in the Scopus database

    2-s2.0-85144458920