All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Locally coherent exact categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588518" target="_blank" >RIV/67985840:_____/24:00588518 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10485-024-09780-1" target="_blank" >https://doi.org/10.1007/s10485-024-09780-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10485-024-09780-1" target="_blank" >10.1007/s10485-024-09780-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Locally coherent exact categories

  • Original language description

    A locally coherent exact category is a finitely accessible additive category endowed with an exact structure in which the admissible short exact sequences are the directed colimits of admissible short exact sequences of finitely presentable objects. We show that any exact structure on a small idempotent-complete additive category extends uniquely to a locally coherent exact structure on the category of ind-objects, in particular, any finitely accessible category has the unique maximal and the unique minimal locally coherent exact category structures. All locally coherent exact categories are of Grothendieck type in the sense of Št’ovíček. We also discuss the canonical embedding of a small exact category into the abelian category of additive sheaves in connection with the locally coherent exact structure on the ind-objects, and deduce two periodicity theorems as applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Categorical Structures

  • ISSN

    0927-2852

  • e-ISSN

    1572-9095

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    30

  • Pages from-to

    20

  • UT code for WoS article

    001277796100001

  • EID of the result in the Scopus database

    2-s2.0-85199810565