A Derived Gabriel-Popescu Theorem for t-Structures via Derived Injectives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472245" target="_blank" >RIV/00216208:11320/23:10472245 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lPAISHzure" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lPAISHzure</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnab367" target="_blank" >10.1093/imrn/rnab367</a>
Alternative languages
Result language
angličtina
Original language name
A Derived Gabriel-Popescu Theorem for t-Structures via Derived Injectives
Original language description
We prove a derived version of the Gabriel-Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category of dg-modules. We give an original proof based on a generalization of Mitchell's argument in A quick proof of the Gabriel-Popesco theorem that involves derived injective objects. As an application, we provide a short proof of the fact that derived categories of Grothendieck abelian categories have a unique dg-enhancement.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2023
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
66
Pages from-to
4695-4760
UT code for WoS article
000961056100005
EID of the result in the Scopus database
2-s2.0-85152528297