The finite type of modules of bounded projective dimension and Serre's conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588523" target="_blank" >RIV/67985840:_____/24:00588523 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10489442
Result on the web
<a href="https://doi.org/10.1112/blms.13099" target="_blank" >https://doi.org/10.1112/blms.13099</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.13099" target="_blank" >10.1112/blms.13099</a>
Alternative languages
Result language
angličtina
Original language name
The finite type of modules of bounded projective dimension and Serre's conditions
Original language description
Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
56
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
2760-2775
UT code for WoS article
001237368300001
EID of the result in the Scopus database
2-s2.0-85194860298