All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The finite type of modules of bounded projective dimension and Serre's conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588523" target="_blank" >RIV/67985840:_____/24:00588523 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10489442

  • Result on the web

    <a href="https://doi.org/10.1112/blms.13099" target="_blank" >https://doi.org/10.1112/blms.13099</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.13099" target="_blank" >10.1112/blms.13099</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The finite type of modules of bounded projective dimension and Serre's conditions

  • Original language description

    Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    2760-2775

  • UT code for WoS article

    001237368300001

  • EID of the result in the Scopus database

    2-s2.0-85194860298