Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00599944" target="_blank" >RIV/67985840:_____/24:00599944 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.21136/MB.2023.0162-22" target="_blank" >https://doi.org/10.21136/MB.2023.0162-22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/MB.2023.0162-22" target="_blank" >10.21136/MB.2023.0162-22</a>
Alternative languages
Result language
angličtina
Original language name
Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
Original language description
In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set E does not always imply the existence of integral over every subset T of E. The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
2464-7136
Volume of the periodical
149
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
27
Pages from-to
337-363
UT code for WoS article
001034335700001
EID of the result in the Scopus database
2-s2.0-85205862547