All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A year-round observation of δ13C of dicarboxylic acids and related compounds in fine aerosols: Implications from Central European background site

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00573475" target="_blank" >RIV/67985858:_____/23:00573475 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0343915" target="_blank" >https://hdl.handle.net/11104/0343915</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2023.139393" target="_blank" >10.1016/j.chemosphere.2023.139393</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A year-round observation of δ13C of dicarboxylic acids and related compounds in fine aerosols: Implications from Central European background site

  • Original language description

    Isotopic analysis of specific compounds in aerosols can be a useful tool when studying atmospheric processes. Here, we present the results of stable carbon isotope ratio (δ13C) measurements performed on a one-year set (n = 96, Sep. 2013–Aug. 2014) of dicarboxylic acids and related compounds in PM1 at a rural Central European background site, Košetice (Czech Republic). The most 13C enriched acid was oxalic (C2, annual average = −16.6 ± 5.0‰) followed by malonic (C3, avg. = −19.9 ± 6.6‰) and succinic (C4, avg. = −21.3 ± 4.6‰) acids. Thus, δ13C values decreased with an increase in carbon numbers. Azelaic acid (C9, avg. = −27.2 ± 3.6‰) was found to be the least 13C enriched. A comparison of δ13C of dicarboxylic acids from other background sites, especially in Asia, shows similar values to those from the European site. This comparison also showed that C2 is more 13C enriched at background sites than at urban ones. In general, we did not observe significant seasonal differences in δ13C values of dicarboxylic acids at the Central European station. We observed statistically significant differences (p value < 0.05) between winter and summer δ13C values solely for C4, glyoxylic acid (ωC2), glutaric acid (C5) and suberic acid (C8). The only significant correlations between δ13C of C2 and δ13C of C3 were found in spring and summer, suggesting that the oxidation of C3 to C2 is significant in these months with a strong contribution from biogenic aerosols. The strongest season-independent annual correlation was observed in δ13C values between C2 and C4, the two dominant dicarboxylic acids. Therefore, C4 appears to be the main intermediate precursor of C2 throughout the whole year.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemosphere

  • ISSN

    0045-6535

  • e-ISSN

    1879-1298

  • Volume of the periodical

    337

  • Issue of the periodical within the volume

    OCT 23

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    139393

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85165209534