Some aspects of the asymptotic dynamics of solutions of the homogeneous Navier-Stokes equations in general domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F10%3A00353112" target="_blank" >RIV/67985874:_____/10:00353112 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Some aspects of the asymptotic dynamics of solutions of the homogeneous Navier-Stokes equations in general domains
Original language description
In the first part of the paper we study decays of solutions of the Navier-Stokes equations on short time intervals. We show as the main result that solutions satisfying the strong energy inequality do not exhibit large decays if they are measured in theenergetic L^2 norm. In the second part of the paper we characterize approximately the subspace of the phase space through which the trajectory of the solution moves. As a consequence of the presented results we get that the energy of solution cannot decay more quickly than exponentially.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA200600801" target="_blank" >IAA200600801: Decomposition techniques for flow-field analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
33
Pages from-to
—
UT code for WoS article
000285929600003
EID of the result in the Scopus database
—