Regularity criteria for the Navier–Stokes equations based on one component of velocity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F17%3A00468633" target="_blank" >RIV/67985874:_____/17:00468633 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/17:43931641
Result on the web
<a href="http://dx.doi.org/10.1016/j.nonrwa.2016.11.005" target="_blank" >http://dx.doi.org/10.1016/j.nonrwa.2016.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2016.11.005" target="_blank" >10.1016/j.nonrwa.2016.11.005</a>
Alternative languages
Result language
angličtina
Original language name
Regularity criteria for the Navier–Stokes equations based on one component of velocity
Original language description
We study the regularity criteria for the incompressible Navier–Stokes equations in the whole space R3R3 based on one velocity component, namely u3u3, ∇u3∇u3 and ∇2u3∇2u3. We use a generalization of the Troisi inequality and anisotropic Lebesgue spaces and prove, for example, that the condition ∇u3∈Lβ(0,TLp)∇u3∈Lβ(0,TLp), where 2/β+3/p=7/4+1/(2p)2/β+3/p=7/4+1/(2p) and p∈(2,∞]p∈(2,∞], yields the regularity of uu on (0,T](0,T].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA14-02067S" target="_blank" >GA14-02067S: Advanced methods for flow-field analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
June
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
379-396
UT code for WoS article
000393267100020
EID of the result in the Scopus database
2-s2.0-85006129679