On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00227613" target="_blank" >RIV/68407700:21110/14:00227613 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2014.03.018" target="_blank" >http://dx.doi.org/10.1016/j.na.2014.03.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2014.03.018" target="_blank" >10.1016/j.na.2014.03.018</a>
Alternative languages
Result language
angličtina
Original language name
On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component
Original language description
We improve a regularity criterion for the solutions to the Navier-Stokes equations in the full three-dimensional space involving the gradient of one velocity component. Revising the method used in cite{PoZh} and cite{PoZh2}, we show that a weak solution$u$ is regular on $(0,T)$ provided that $nabla u_3 in L^t(0,T;L^s)$, where $2/t+3/s = 19/10$ for $s in [30/19,10/3]$ and $2/t+3/s = 7/4+1/(2s)$ for $s in [10/3,infty]$. It improves the known results for $s in [30/19,150/77)$ and $s in (10/3,infty]$
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
104
Issue of the periodical within the volume
červenec
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
84-89
UT code for WoS article
000335009200007
EID of the result in the Scopus database
—