All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00227615" target="_blank" >RIV/68407700:21110/14:00227615 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4904836" target="_blank" >http://dx.doi.org/10.1063/1.4904836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4904836" target="_blank" >10.1063/1.4904836</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component

  • Original language description

    We present a regularity criterion for the solutions to the Navier-Stokes equations based on the gradient of one velocity component. Starting with the method developed in cite{CaTi} for the case of one entry of the velocity gradient and using further someinequalities concerning the anisotropic Sobolev spaces, we show as a main result that a weak solution $u$ is regular on $(0,T)$, $T>0$, provided that $nabla u_3 in L^t(0,T;L^s)$, where $2/t+3/s = 3/2+3/(4s)$ and $s in (3/2,2)$. It improves the known results for $s in (3/2,15/8)$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

    000347168000006

  • EID of the result in the Scopus database