Dependence of amino-acid dielectric relaxation on solute-water interaction: Molecular dynamics study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F20%3A00538157" target="_blank" >RIV/67985882:_____/20:00538157 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.molliq.2020.112613" target="_blank" >https://doi.org/10.1016/j.molliq.2020.112613</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molliq.2020.112613" target="_blank" >10.1016/j.molliq.2020.112613</a>
Alternative languages
Result language
angličtina
Original language name
Dependence of amino-acid dielectric relaxation on solute-water interaction: Molecular dynamics study
Original language description
Computational molecular methods represent an ultimate microscope to visualize and quantify dynamics of biomolecules and nanostructures on the atomic scale and also a tool to link this dynamics to macroscopic observables.nHowever, these potentially powerful computational methods have been so far poorly explored to gain a deeper knowledge of broadband biomolecular dielectric properties which are essential for novel noninvasive electromagnetic methods in biomedical diagnostics and treatment.nTo fill in this gap, we explore here a broad range of parameter space of molecular dynamics simulation (two common water models, four force fields, eight types of amino acids) and demonstrate their effects on dielectric increment and relaxation time. We found that the force field and water parameters influence the extracted dielectric increment and relaxation time of the biomolecule-water solution dielectric spectra significantly. To understand this observation, we dissected the effect of individual parameters of molecular force field on the dielectric spectra. For the first time, we showed the charges on the atoms, and the bond length of amino acids are the determining factors of both their dielectric increment and relaxation time in molecular dynamics simulations.nHence, our results leverage atomic resolution-based computational methods for a deeper understanding of biomolecular microwave dielectric properties with potential biological, medical and nanotechnological applications
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/GA18-23597S" target="_blank" >GA18-23597S: High-frequency microdevices for controlling protein nanomotors</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Molecular Liquids
ISSN
0167-7322
e-ISSN
—
Volume of the periodical
303
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
112613
UT code for WoS article
000533612700006
EID of the result in the Scopus database
2-s2.0-85079237045