All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biological autoluminescence for assessing oxidative processes in yeast cell cultures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F21%3A00553145" target="_blank" >RIV/67985882:_____/21:00553145 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1038/s41598-021-89753-9" target="_blank" >https://doi.org/10.1038/s41598-021-89753-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-021-89753-9" target="_blank" >10.1038/s41598-021-89753-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biological autoluminescence for assessing oxidative processes in yeast cell cultures

  • Original language description

    Nowadays, modern medicine is looking for new, more gentle, and more efficient diagnostic methods. A pathological state of an organism is often closely connected with increased amount of reactive oxygen species. They can react with biomolecules and subsequent reactions can lead to very low endogenous light emission (biological autoluminescence-BAL). This phenomenon can be potentially used as a non-invasive and low-operational-cost tool for monitoring oxidative stress during diseases. To contribute to the understanding of the parameters affecting BAL, we analyzed the BAL from yeast Saccharomyces cerevisiae as a representative eukaryotic organism. The relationship between the BAL intensity and the amount of reactive oxygen species that originates as a result of the Fenton reaction as well as correlation between spontaneous BAL and selected physical and chemical parameters (pH, oxygen partial pressure, and cell concentration) during cell growth were established. Our results contribute to real-time non-invasive methodologies for monitoring oxidative processes in biomedicine and biotechnology

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GX20-06873X" target="_blank" >GX20-06873X: SubTHz on-chip devices for controlling protein nanomachines</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    10852

  • UT code for WoS article

    000659129600022

  • EID of the result in the Scopus database

    2-s2.0-85106908746