All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cerium oxide catalyzed disproportionation of hydrogen peroxide: a closer look at the reaction intermediate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F24%3A00584292" target="_blank" >RIV/67985882:_____/24:00584292 - isvavai.cz</a>

  • Alternative codes found

    RIV/62156489:43210/24:43924498

  • Result on the web

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202304012" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202304012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/chem.202304012" target="_blank" >10.1002/chem.202304012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cerium oxide catalyzed disproportionation of hydrogen peroxide: a closer look at the reaction intermediate

  • Original language description

    Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2O2). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O22-) and/or cerium-hydroperoxo (Ce-OOH-) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2O2.nnThis study focuses on the reaction mechanism of H2O2 disproportionation by cerium oxide nanoparticles (CNP). In aqueous dispersions, H2O2 adsorption at CNP interfaces triggers the formation of stable intermediates known as cerium-peroxo complexes. The CNP catalytic reactivity is explored, showing an increase with Ce(III)-fraction and a decrease in the presence of polymer coatings, offering insights for potential nanomedicine applications.image

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemistry - A European Journal

  • ISSN

    0947-6539

  • e-ISSN

    1521-3765

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    202304012

  • UT code for WoS article

    001144435100001

  • EID of the result in the Scopus database

    2-s2.0-85182647220