Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985904%3A_____%2F17%3A00483870" target="_blank" >RIV/67985904:_____/17:00483870 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3791/55770" target="_blank" >http://dx.doi.org/10.3791/55770</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3791/55770" target="_blank" >10.3791/55770</a>
Alternative languages
Result language
angličtina
Original language name
Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice
Original language description
The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 mu L, 1.2 x 10(13) genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30402 - Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction)
Result continuities
Project
<a href="/en/project/LO1609" target="_blank" >LO1609: Models of the Serious Human Diseases: Traumatic Spinal Cord Injury, Huntington’s Disease, Melanoma and Infertility</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Jove-Journal of Visualized Experiments
ISSN
1940-087X
e-ISSN
—
Volume of the periodical
125
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
—
UT code for WoS article
000407455900037
EID of the result in the Scopus database
2-s2.0-85024404853