All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How Can Abstract Objects of Mathematics Be Known?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F19%3A00511564" target="_blank" >RIV/67985955:_____/19:00511564 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11410/19:10465768

  • Result on the web

    <a href="https://academic.oup.com/philmat/article-abstract/27/3/316/5544672?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/philmat/article-abstract/27/3/316/5544672?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/philmat/nkz011" target="_blank" >10.1093/philmat/nkz011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    How Can Abstract Objects of Mathematics Be Known?

  • Original language description

    The aim of the paper is to answer some arguments raised against mathematical structuralism developed by Michael Resnik. These arguments stress the abstractness of mathematical objects, especially their causal inertness, and conclude that mathematical objects, the structures posited by Resnik included, are inaccessible to human cognition. In the paper I introduce a distinction between abstract and ideal objects and argue that mathematical objects are primarily ideal. I reconstruct some aspects of the instrumental practice of mathematics, such as symbolic manipulations or ruler-and-compass constructions, and argue that instrumental practice can secure epistemic access to ideal objects of mathematics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Philosophia Mathematica

  • ISSN

    0031-8019

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    316-334

  • UT code for WoS article

    000510198300003

  • EID of the result in the Scopus database

    2-s2.0-85074910409