How Can Abstract Objects of Mathematics Be Known?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F19%3A00511564" target="_blank" >RIV/67985955:_____/19:00511564 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11410/19:10465768
Result on the web
<a href="https://academic.oup.com/philmat/article-abstract/27/3/316/5544672?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/philmat/article-abstract/27/3/316/5544672?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/philmat/nkz011" target="_blank" >10.1093/philmat/nkz011</a>
Alternative languages
Result language
angličtina
Original language name
How Can Abstract Objects of Mathematics Be Known?
Original language description
The aim of the paper is to answer some arguments raised against mathematical structuralism developed by Michael Resnik. These arguments stress the abstractness of mathematical objects, especially their causal inertness, and conclude that mathematical objects, the structures posited by Resnik included, are inaccessible to human cognition. In the paper I introduce a distinction between abstract and ideal objects and argue that mathematical objects are primarily ideal. I reconstruct some aspects of the instrumental practice of mathematics, such as symbolic manipulations or ruler-and-compass constructions, and argue that instrumental practice can secure epistemic access to ideal objects of mathematics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Philosophia Mathematica
ISSN
0031-8019
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
316-334
UT code for WoS article
000510198300003
EID of the result in the Scopus database
2-s2.0-85074910409