Late Scholastic Analyses of Inductive Reasoning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00532254" target="_blank" >RIV/67985955:_____/20:00532254 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.5840/studneoar20201712" target="_blank" >https://doi.org/10.5840/studneoar20201712</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5840/studneoar20201712" target="_blank" >10.5840/studneoar20201712</a>
Alternative languages
Result language
angličtina
Original language name
Late Scholastic Analyses of Inductive Reasoning
Original language description
The late scholastic era was, among others, contemporary to the “emergence of probability”, the German academic philosophy from Leibniz to Kant, and the introduction of Newtonian physics. Within this era, two branches of the late-scholastic analysis of induction can be identified, one which can be thought of as a continual development of earlier scholastic approaches, while the other one absorbed influences of early modern philosophy, mathematics, and physics. Both branches of scholastic philosophy share the terminology of modalities, probability, and forms of (inductive) arguments. Furthermore, induction was commonly considered valid as a result of being a covert syllogism. Last but not least, there appears to be a difference in emphasis between the two traditions’ analyses of induction: while Tolomei discussed the theological presuppositions of induction, Amort’s “leges contingentium” exemplify the principles of induction by aleatory phenomena and Boscovich’s rules for inductive arguments are predominately concerned with the generalisation of macro-level observations to the micro-level.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GA17-12408S" target="_blank" >GA17-12408S: Probabilistic reasoning in late scholastic logic</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Neoaristotelica
ISSN
1214-8407
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
32
Pages from-to
35-66
UT code for WoS article
000619558700002
EID of the result in the Scopus database
2-s2.0-85096331835