Begriffsschrift's Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00535046" target="_blank" >RIV/67985955:_____/20:00535046 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1215/00294527-2020-0014" target="_blank" >https://doi.org/10.1215/00294527-2020-0014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1215/00294527-2020-0014" target="_blank" >10.1215/00294527-2020-0014</a>
Alternative languages
Result language
angličtina
Original language name
Begriffsschrift's Logic
Original language description
In Begriffsschrift, Frege presented a formal system and used it to formulate logical definitions of arithmetical notions and to deduce some noteworthy theorems by means of logical axioms and inference rules. From a contemporary perspective, Begriffsschrift’s deductions are, in general, straightforward, it is assumed that all of them can be reproduced in a second-order formal system. Some deductions in this work present-according to this perspective-oddities that have led many scholars to consider it to be Frege’s inaccuracies which should be amended. In this paper, we continue with the analysis of Begriffsschrift’s logic undertaken in an earlier work and argue that its deductive system must not be reconstructed as a second-order calculus. This leads us to argue that Begriffsschrift’s deductions do not need any correction but, on the contrary, can be explained in coherence with a global reading of this work and, in particular, with its fundamental distinction between function and argument.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Notre Dame Journal of Formal Logic
ISSN
0029-4527
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
409-440
UT code for WoS article
000580465300004
EID of the result in the Scopus database
2-s2.0-85096075772