All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Begriffsschrift's Logic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00535046" target="_blank" >RIV/67985955:_____/20:00535046 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1215/00294527-2020-0014" target="_blank" >https://doi.org/10.1215/00294527-2020-0014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00294527-2020-0014" target="_blank" >10.1215/00294527-2020-0014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Begriffsschrift's Logic

  • Original language description

    In Begriffsschrift, Frege presented a formal system and used it to formulate logical definitions of arithmetical notions and to deduce some noteworthy theorems by means of logical axioms and inference rules. From a contemporary perspective, Begriffsschrift’s deductions are, in general, straightforward, it is assumed that all of them can be reproduced in a second-order formal system. Some deductions in this work present-according to this perspective-oddities that have led many scholars to consider it to be Frege’s inaccuracies which should be amended. In this paper, we continue with the analysis of Begriffsschrift’s logic undertaken in an earlier work and argue that its deductive system must not be reconstructed as a second-order calculus. This leads us to argue that Begriffsschrift’s deductions do not need any correction but, on the contrary, can be explained in coherence with a global reading of this work and, in particular, with its fundamental distinction between function and argument.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Notre Dame Journal of Formal Logic

  • ISSN

    0029-4527

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    409-440

  • UT code for WoS article

    000580465300004

  • EID of the result in the Scopus database

    2-s2.0-85096075772