All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A ridge to homogeneity for linear models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F20%3A00540210" target="_blank" >RIV/67985998:_____/20:00540210 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11640/20:00532771

  • Result on the web

    <a href="https://doi.org/10.1080/00949655.2020.1779722" target="_blank" >https://doi.org/10.1080/00949655.2020.1779722</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/00949655.2020.1779722" target="_blank" >10.1080/00949655.2020.1779722</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A ridge to homogeneity for linear models

  • Original language description

    In some heavily parameterized models, one may benefit from shifting some of parameters towards a common target. We consider L2 shrinkage towards an equal parameter value that balances between unrestricted estimation (i.e. allowing full heterogeneity) and estimation under equality restriction (i.e. imposing full homogeneity). The penalty parameter of such ridge regression estimator is tuned using leave-one-out cross-validation. The reduction in predictive mean squared error tends to increase with the dimensionality of the parameter set. We illustrate the benefit of such shrinkage with a few stylized examples. We also work out an example of a heterogeneous panel model, including estimation on real data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50202 - Applied Economics, Econometrics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Statistical Computation and Simulation

  • ISSN

    0094-9655

  • e-ISSN

  • Volume of the periodical

    90

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    2455-2472

  • UT code for WoS article

    000546468100001

  • EID of the result in the Scopus database

    2-s2.0-85087364770