Effects of histidin-2-ylidene vs. imidazol-2-ylidene ligands on the anticancer and antivascular activity of complexes of ruthenium, iridium, platinum, and gold
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F16%3A00471954" target="_blank" >RIV/68081707:_____/16:00471954 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/16:33161177
Result on the web
<a href="http://dx.doi.org/10.1016/j.jinorgbio.2016.07.021" target="_blank" >http://dx.doi.org/10.1016/j.jinorgbio.2016.07.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jinorgbio.2016.07.021" target="_blank" >10.1016/j.jinorgbio.2016.07.021</a>
Alternative languages
Result language
angličtina
Original language name
Effects of histidin-2-ylidene vs. imidazol-2-ylidene ligands on the anticancer and antivascular activity of complexes of ruthenium, iridium, platinum, and gold
Original language description
Couples of N-heterocyclic carbene complexes of ruthenium, iridium, platinum, and gold, each differing only in the carbene ligand being either 1,3-dimethylimidazol-2-ylidene (IM) or 1,3-dimethyl-N-boc-O-methylhistidin-2-yl-idene (HIS), were assessed for their antiproliferative effect on seven cancer cell lines, their interaction with DNA, their cell cycle interference, and their vascular disrupting properties. In mTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays only the platinum complexes were cytotoxic at single-digit micromolar IC50 concentrations with the (HIS)Pt complex being on average twice as active as the (IM)Pt complex. The former was highly efficacious against cisplatin-resistant HT-29 colon carcinoma cells where the latter had no effect. Both Pt complexes were accumulated by cancer cells and bound to double-helical DNA equally well. Only the (HIS)Pt complex modified the electrophoretic mobility of circular DNA in vitro due to the HIS ligand causing greater morphological changes to the DNA. Both platinum complexes induced accumulation of 518A2 melanoma cells in G2/M and S phase of the cell cycle. A disruption of blood vessels in the chorioallantoic membrane of fertilized chicken eggs was observed for both platinum complexes and the (IM)gold complex. The (HIS)platinum complex was as active as cisplatin in tumor xenografted mice while being tolerated better. We found that the HIS ligand may augment the cytotoxicity of certain antitumoral metal fragments in two ways: by acting as a transmembrane carrier increasing the cellular accumulation of the complex, and by initiating a pronounced distortion and unwinding of DNA. We identified a new (HIS)platinum complex which was highly cytotoxic against cancer cells including cisplatin-resistant ones. (C) 2016 Elsevier Inc All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BO - Biophysics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-21053S" target="_blank" >GA14-21053S: Mechanistic studies on dual targeting of DNA and histone deacetylase with bifunctional inhibitors</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Inorganic Biochemistry
ISSN
0162-0134
e-ISSN
—
Volume of the periodical
163
Issue of the periodical within the volume
OCT2016
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
221-228
UT code for WoS article
000388546800024
EID of the result in the Scopus database
—