All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+, K+, and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F17%3A00476444" target="_blank" >RIV/68081707:_____/17:00476444 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14740/17:00096979

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acs.jpcb.7b01836" target="_blank" >http://dx.doi.org/10.1021/acs.jpcb.7b01836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.7b01836" target="_blank" >10.1021/acs.jpcb.7b01836</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+, K+, and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential

  • Original language description

    Stacking of guanine quartets (GQs) can trigger the formation of DNA or RNA quadruple helices, which play numerous biochemical roles. The GQs are stabilized by alkali cations, mainly K+ and Na+, which can reside in, or channel through, the central axis of the GQ stems. Further, ion conduction through GQ wires can be leveraged for nanochemistry applications. G-quadruplex systems have been extensively studied by classical molecular dynamics (MD) simulations using pair-additive force fields or by quantum-chemical (QC) calculations. However, the non-polarizable force fields are very approximate, while QC calculations lack the necessary sampling. Thus, ultimate description of GQ systems would require long-enough simulations using advanced polarizable molecular mechanics (MM). However, to perform such calculations, it is first mandatory to evaluate the methods accuracy using benchmark QC. We report such an evaluation for SIBFA polarizable MM, bearing on the channeling (movement) of an alkali cation (Li+, Na+, K+, or Rb+) along the axis of two stacked G quartets interacting with either one or two ions. The QC energy profiles display markedly different features depending upon the cation but can be retrieved in the majority of cases by the SIBFA profiles. An appropriate balance of first-order (electrostatic and short-range repulsion) and second-order (polarization, charge-transfer, and dispersion) contributions within Delta E is mandatory. With two cations in the channel, the relative weights of the second-order contributions increase steadily upon increasing the ion size. In the G8 complexes with two K+ or two Rb+ cations, the sum of polarization and charge-transfer exceeds the first order terms for all ion positions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    3997-4014

  • UT code for WoS article

    000400534200010

  • EID of the result in the Scopus database