All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081715%3A_____%2F23%3A00560227" target="_blank" >RIV/68081715:_____/23:00560227 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0333236" target="_blank" >https://hdl.handle.net/11104/0333236</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.talanta.2022.123831" target="_blank" >10.1016/j.talanta.2022.123831</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples

  • Original language description

    Micro-electromembrane extraction (μ-EME) was presented for the selective extraction of four main β-lactam antibiotics (penicillin, phenoxypenicillin, ampicillin, and amoxicillin) from complex samples. A volatile solvent (ethyl acetate or chloroform) was sandwiched between a plug of the complex sample and another plug of an aqueous acceptor solution in a transparent polymeric tube and formed the so-called free liquid membrane (FLM). The use of the FLM eliminated the evaporation of the solvent and enabled the μ-EME of the antibiotics, which was carried out by the application of DC voltage to the terminal aqueous solutions. The drugs in the complex sample were selectively transferred through the FLM to the acceptor solution, which was directly used for their determination by micellar electrokinetic chromatography with ultraviolet detection (MEKC-UV). The μ-EME was characterized by sub-μA electric currents, high elimination of matrix components, high stability of operational solutions, and suitability for extracting undiluted complex samples. The μ-EME/MEKC-UV method yielded good analytical repeatability (RSDs of peak areas ≤5%), extraction recoveries (40–84%), accuracy (92–105%) and linearity over one and a half order of magnitude (R2 ≥ 0.9998), and was applied to the determination of the four β-lactam antibiotics in human serum and waste water at clinically and environmentally relevant concentration levels. Further improvement in the method sensitivity was achieved by changing the μ-EME tube geometryn(conical shape) and increasing the complex sample volume (100 μL). The analytes were enriched by factors of 7.6–11.5, the limits of detection dropped down to less than 18 ng/mL, and the modified μ-EME/MEKC-UV method enabled the trace determination of β-lactam antibiotics in complex samples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Talanta

  • ISSN

    0039-9140

  • e-ISSN

    1873-3573

  • Volume of the periodical

    252

  • Issue of the periodical within the volume

    JAN

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    123831

  • UT code for WoS article

    000860344000007

  • EID of the result in the Scopus database

    2-s2.0-85136123626