Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081715%3A_____%2F23%3A00574423" target="_blank" >RIV/68081715:_____/23:00574423 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.3c01043" target="_blank" >https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.3c01043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.analchem.3c01043" target="_blank" >10.1021/acs.analchem.3c01043</a>
Alternative languages
Result language
angličtina
Original language name
Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
Original language description
Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). Particles emitting two emission wavelengths appear as double spots in the MPS images. The counting of double spots per MPS image is principally comparable to the cross-correlation amplitude in cross-correlation spectroscopy─both quantities can be used for quantification. However, MPS possesses much larger detection volumes and operates digitally, MPS can scan approximately 103× larger volume of dispersion in the same unit of time. These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L–1) and the linearity range (4.8 fmol L–1 to 40 pmol L–1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L–1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 μm deep microfluidic channel. Because MPS is a new technique, the applications are only limited by the imagination and the persistence of the experimenter. Besides characterizing freely diffusing molecules and nanoparticles of diverse types, we speculate on homogeneous immunochemical assays and ratiometric nanosensors for high-throughput microfluidics. Additional imaging modalities like fluorescence, dark-field, and bright-field are of high interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytical Chemistry
ISSN
0003-2700
e-ISSN
1520-6882
Volume of the periodical
95
Issue of the periodical within the volume
33
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
12256-12263
UT code for WoS article
001043684300001
EID of the result in the Scopus database
2-s2.0-85168364256