All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Radiation damage evolution in High Entropy Alloys (HEAs) caused by 3–5 MeV Au and 5 MeV Cu ions in a broad range of dpa in connection to mechanical properties and internal morphology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00577605" target="_blank" >RIV/68081723:_____/23:00577605 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/23:00577605 RIV/61389021:_____/23:00577605 RIV/61389005:_____/23:00577605 RIV/68407700:21340/23:00369620 and 2 more

  • Result on the web

    <a href="https://doi.org/10.1016/j.nme.2023.101510" target="_blank" >https://doi.org/10.1016/j.nme.2023.101510</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nme.2023.101510" target="_blank" >10.1016/j.nme.2023.101510</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Radiation damage evolution in High Entropy Alloys (HEAs) caused by 3–5 MeV Au and 5 MeV Cu ions in a broad range of dpa in connection to mechanical properties and internal morphology

  • Original language description

    High Entropy Alloys (HEAs) are prospective materials for nuclear fusion reactors and were irradiated in this study at a broad range of energetic ion fluences. Different ion masses (Cu and Au ions) and energies (3 and 5 MeV) were selected to investigate dpa (displacement per atom) development, radiation defect accumulation based on prevailing collision processes (Au ions) and ionization processes (Cu ions) in various HEAs. The studied HEAs differ in terms of elemental composition, internal morphology (grain structure) and other modifiers. Dpa values of 1 to similar to 66 were achieved at Cu and Au ion fluences from 4 x 10(14) to 1.3 x 10(16) ions.cm(-2) at room temperature, which generated varying levels of lattice damage. Theoretical simulations were performed to es-timate the energy stopping and dpa depth distribution using SRIM code and compared with Au-concentration depth profiles determined by Rutherford backscattering spectrometry for Au-ions with 3 MeV ion energy. The prevailing energy losses of ions via ionization processes for Cu-5 MeV ions were found to increase the damage through lattice strain and probable lattice distortion, although the main defect introduction is expected to occur via collisions during nuclear stopping. Structural modification and defect accumulation were investigated by positron annihilation spectroscopy (PAS), which revealed a broader damaged layer with defects, where HEA-Nb (NbCrFeMnNi) exhibited the least damage accumulation from chosen alloys with no strong relation to the Au-5 MeV ion implantation fluence, whereas strong defect accumulation was recorded in the Au-ion implanted Eurofer97 used for comparison and HEA-Co (CoCrFeMnNi). PAS analysis also allowed defect sizes to be deter-mined as an additional structural characteristic. The observed trends were also confirmed by thermal property analysis, with a worsening of thermal effusivity recorded after the irradiation in HEA-Co and Eurofer97. The worsening of the thermal properties was confirmed by the layer thickness, where the layer identified by PAS was found to be broader than the SRIM theoretical predictions. Nanoindentation measurements confirmed less pronounced radiation hardening of HEA-Nb relative to that observed in HEA-Co and Eurofer97. Transmission Electron Microscopy (TEM) analysis revealed layer thicknesses in reasonable agreement with the dpa depth profiles. The thermal effusivity decreased in the surface-irradiated layer in all investigated samples, the least influenced material was HEA-Nb.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Materials and Energy

  • ISSN

    2352-1791

  • e-ISSN

    2352-1791

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    DEC

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    101510

  • UT code for WoS article

    001084471800001

  • EID of the result in the Scopus database

    2-s2.0-85171423895