All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Difraction in a scanning electron microscopie

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F16%3A00460211" target="_blank" >RIV/68081731:_____/16:00460211 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.trends.isibrno.cz/" target="_blank" >http://www.trends.isibrno.cz/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Difraction in a scanning electron microscopie

  • Original language description

    Manipulation with the primary beam phase in a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) has drawn significant attention in the microscopy community in the recent years. Although a few applications were found long before, some are still subjects of a future research. One of them is the use of electron vortex beams, which has very promising potential. It ranges from probing magnetic materials and manipulating with nanoparticles to spin polarization of a beam in an electron microscope.nThe methods for producing electron vortex beams have undergone a lot of development in recent years as well. The most versatile way is holographic reconstruction using computer-generated holograms modifying either phase or amplitude. As the method isnbased on diffraction, beam coherence is a very important parameter here. It is usually performed in TEM at energies of about 100 – 300 keV which are well suited for diffraction on artificial structures for two reasons. The coherence of the primary beam is often reasonable, and the diffraction pattern is easily observed. This is however not the case for a standard scanning electron microscope (SEM) with typical energy up to 30 keV.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 15th International Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation

  • ISBN

    978-80-87441-17-6

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    56-57

  • Publisher name

    Institute of Scientific Instruments CAS

  • Place of publication

    Brno

  • Event location

    Skalský dvůr

  • Event date

    May 29, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000391254000025