All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00477765" target="_blank" >RIV/68081731:_____/17:00477765 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/17:00094844

  • Result on the web

    <a href="http://dx.doi.org/10.1371/journal.pone.0179709" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0179709</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0179709" target="_blank" >10.1371/journal.pone.0179709</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements

  • Original language description

    Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular micro-tubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Muller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility, the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (=cross-linking protein complexes), presumably of actin nature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    000404135800054

  • EID of the result in the Scopus database

    2-s2.0-85021248415