All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00480406" target="_blank" >RIV/68081731:_____/17:00480406 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14740/17:00094662 RIV/00216305:26620/17:PU123018

  • Result on the web

    <a href="http://dx.doi.org/10.1155/2017/7859289" target="_blank" >http://dx.doi.org/10.1155/2017/7859289</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2017/7859289" target="_blank" >10.1155/2017/7859289</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging

  • Original language description

    Magnetic nanoparticles produced using aqueous coprecipitation usually exhibit wide particle size distribution. Synthesis of small and uniform magnetic nanoparticles has been the subject of extensive research over recent years. Sufficiently small superparamagnetic iron oxide nanoparticles easily permeate tissues and may enhance the contrast in magnetic resonance imaging. Furthermore, their unique small size also allows them to migrate into cells and other body compartments. To better control their synthesis, a chemical coprecipitation protocol was carefully optimised regarding the influence of the injection rate of base and incubation times. Thecitrate-stabilised particles were produced with a narrow average size range below 2nm and excellent stability. The stability of nanoparticles was monitored by long-term measurement of zeta potentials and relaxivity. Biocompatibility was tested on the Caki-2 cells with good tolerance. The application of nanoparticles for magnetic resonance imaging (MRI)was then evaluated. The relaxivities (r(1),r(2)) and r(2)/r(1) ratio calculated from MR images of prepared phantoms indicate the nanoparticles as a promising T-2-contrast probe.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nanomaterials

  • ISSN

    1687-4110

  • e-ISSN

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    FEB

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000396144500001

  • EID of the result in the Scopus database

    2-s2.0-85029210869