All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F19%3A00504418" target="_blank" >RIV/68081731:_____/19:00504418 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/19:00108007

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-019-41084-6" target="_blank" >https://www.nature.com/articles/s41598-019-41084-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-019-41084-6" target="_blank" >10.1038/s41598-019-41084-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture

  • Original language description

    Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements-microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils-the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    21

  • Pages from-to

    4466

  • UT code for WoS article

    000461151800050

  • EID of the result in the Scopus database

    2-s2.0-85062962699