All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coherent anti-Stokes Raman scattering microscopy through a multimode fiber endoscope

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F20%3A00535569" target="_blank" >RIV/68081731:_____/20:00535569 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11359/1135907/Coherent-anti-Stokes-Raman-scattering-microscopy-through-a-multimode-fiber/10.1117/12.2555080.short" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11359/1135907/Coherent-anti-Stokes-Raman-scattering-microscopy-through-a-multimode-fiber/10.1117/12.2555080.short</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2555080" target="_blank" >10.1117/12.2555080</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coherent anti-Stokes Raman scattering microscopy through a multimode fiber endoscope

  • Original language description

    Advanced wavefront-shaping methods can be used to transform a simple multimode fiber into an ultra-thin laser scanning microscope. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fiber endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial, 125 μm diameter, 0.29 NA, GRIN fiber as the endoscopic probe. Wavefront shaping on a spatial light modulator is used to create a focus, where the 1-2 ps long pump and Stokes pulses are overlapped in time, which is scanned behind the fiber facet across the sample. The chemical selectivity is demonstrated by imaging 2 μm polystyrene and 2.5 μm PMMA beads with per pixel integration time as low as 1 ms for epi-detection. Epi-detection through the fiber is possible despite the fact that the CARS signal is emitted mainly in the forward direction, away from the fiber facet. Detecting the back-scattered signal from the underlying tissue, requires a large detector aperture to be efficient. By detecting through both the core and the cladding of the fiber, we obtain sufficient detection efficiency. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Biomedical Spectroscopy, Microscopy, and Imaging 2020. Proceedings of SPIE

  • ISBN

    978-151063490-9

  • ISSN

    0277-786X

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    162267

  • Publisher name

    SPIE

  • Place of publication

    Bellingham

  • Event location

    France

  • Event date

    Apr 6, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000674749600004