Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F18%3A00491125" target="_blank" >RIV/68081766:_____/18:00491125 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/18:00104826
Result on the web
<a href="http://dx.doi.org/10.1186/s12862-018-1219-9" target="_blank" >http://dx.doi.org/10.1186/s12862-018-1219-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12862-018-1219-9" target="_blank" >10.1186/s12862-018-1219-9</a>
Alternative languages
Result language
angličtina
Original language name
Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds
Original language description
BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure.nRESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin.nCONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BMC Evolutionary Biology
ISSN
1471-2148
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
—
UT code for WoS article
000437954700001
EID of the result in the Scopus database
2-s2.0-85049519544