An additive matrix preconditioning method with application for domain decomposition and two-level matrix partitionings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F10%3A00353469" target="_blank" >RIV/68145535:_____/10:00353469 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An additive matrix preconditioning method with application for domain decomposition and two-level matrix partitionings
Original language description
Domain decomposition methods enable parallel computation during the iterative solution of partial differential equations of elliptic tupe. In order to limit the number of iterations one must then use an efficient preconditioner which can significantlz reduce the condition number of the given problem and, at the same time, is highly parallelizable. In this paper we describe and analyzse such a preconditioner, which is based on local subdomain inverse matrices and is applicable for various types of domaindecomposition methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET400300415" target="_blank" >1ET400300415: Modelling and simulation of complex technical problems:effective numerical algorithms and parallel implementation using new information technologie</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
5910
Issue of the periodical within the volume
-
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—