On the solution of high order stable time integration methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F13%3A00395518" target="_blank" >RIV/68145535:_____/13:00395518 - isvavai.cz</a>
Result on the web
<a href="http://www.boundaryvalueproblems.com/content/2013/1/108" target="_blank" >http://www.boundaryvalueproblems.com/content/2013/1/108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-2770-2013-108" target="_blank" >10.1186/1687-2770-2013-108</a>
Alternative languages
Result language
angličtina
Original language name
On the solution of high order stable time integration methods
Original language description
Evolution equations arise in many important practical problems. They are frequently stiff, i.e. involves fast, mostly exponentially, decreasing and/or oscillating components. To handle such problems, one must use proper forms of implicit numerical time-integration methods. In this paper, we consider two methods of high order of accuracy, one for parabolic problems and the other for hyperbolic type of problems. For parabolic problems, it is shown how the solution rapidly approaches the stationary solution. It is also shown how the arising quadratic polynomial algebraic systems can be solved efficiently by iteration and use of a proper preconditioner.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary value problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000325749900001
EID of the result in the Scopus database
—