An Efficient Reduced Basis Construction for Stochastic Galerkin Matrix Equations Using Deflated Conjugate Gradients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00537200" target="_blank" >RIV/68145535:_____/20:00537200 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/20:10244148 RIV/61989100:27740/20:10244148
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-14907-9_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14907-9_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14907-9_18" target="_blank" >10.1007/978-3-030-14907-9_18</a>
Alternative languages
Result language
angličtina
Original language name
An Efficient Reduced Basis Construction for Stochastic Galerkin Matrix Equations Using Deflated Conjugate Gradients
Original language description
In this article, we examine an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with uncertain material parameters on given interfaces. The solution of the SG system of equations, here represented as matrix equations, is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for the low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We aim to speed up the process using the deflated conjugate gradients (DCG). Other contributions of this work are a modified specific construction of the RB without the need of Cholesky factor and an adaptive choice of the candidate vectors for the expansion of the RB. The proposed approach allows an efficient parallel implementation
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Electrical Engineering
ISBN
978-3-030-14906-2
ISSN
1876-1100
e-ISSN
1876-1119
Number of pages
10
Pages from-to
175-184
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Ostrava
Event date
Nov 11, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—