All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Standoff distance in ultrasonic pulsating water jet

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00537245" target="_blank" >RIV/68145535:_____/21:00537245 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/14/1/88/htm" target="_blank" >https://www.mdpi.com/1996-1944/14/1/88/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma14010088" target="_blank" >10.3390/ma14010088</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Standoff distance in ultrasonic pulsating water jet

  • Original language description

    The water hammer effect is the basis of technologies which is artificially responsible forthe decay of continuous jets. A recently developed technique enhances the pressure fluctuationsusing an acoustic chamber, leading to enhanced erosion effects for various water volume flow rates.The optimum standoff distance for an ultrasonic enhanced water jet is not appropriately estimatedusing an inclined trajectory. The objective of this study is to comprehend the true nature of theinteraction of the standoff distance following the stair trajectory and traverse speed of the nozzle onthe erosion depth. Additionally, it also critically compares the new method (staircase trajectory) thatobeys the variation in frequency of the impingements for defined volume flow rates with the inclinedtrajectory. In this study, at constant pressure (p= 70 MPa), the role of impingement distribution withthe variation of traverse speed (v= 5–35 mm/s) along the centerline of the footprint was investigated.The maximum erosion depth corresponding to each traverse speed is observed at approximatelysame standoff distance (65±5 mm) and decreases with the increment in traverse speed (h= 1042 and47μm atv= 5 and 35 mm/s, respectively). The results are attributed to the variation in the numberof impingements per unit length. The surface and morphology analysis of the cross-section usingSEM manifested the presence of erosion characteristics (micro-cracks, cavities, voids, and upheavedsurface). By varying the water cluster, different impingement densities can be achieved that aresuitable for technological operations such as surface peening, material disintegration, or surfaceroughening

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/LO1406" target="_blank" >LO1406: Institute of clean technologies for mining and utilization of raw materials for energy use -Sustainability program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    88

  • UT code for WoS article

    000606122600001

  • EID of the result in the Scopus database

    2-s2.0-85098848559